-
Notifications
You must be signed in to change notification settings - Fork 0
Home
Welcome to my Reading list!
Date
Keywords
meteriral
主要内容
篇章结构
详细要点
个人感想
补充内容
-
Vanessa Klotzman, Farima Farmahinifarahani, and Cristina Lopes. 2021. Public Software Development Activity During the Pandemic. In ACM / IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM) (ESEM ’21), October 11–15, 2021, Bari, Italy. 聚焦于程序员的贡献,使用GH与SO两个网站的数据进行对比研究,但对于GH网站的研究较为简单,仅进行了整体性数量上的简单统计与线性拟合,缺乏对于用户的细致分类与差别化研究。
-
Pedro Almir M. Oliveira;Pedro A. Santos Neto;Gleison Silva;Irvayne Ibiapina;Werney L. Lira;Rossana M. C. Andrade. Software Development During COVID-19 Pandemic: an Analysis of Stack Overflow and GitHub. 2021 IEEE/ACM 3rd International Workshop on Software Engineering for Healthcare (SEH) 主要是针对GH与SO两个网站上关于Covid-19的相关项目与问题,研究他们的发展趋势,与其他文献相比,针对性更强,立足点更窄,具有借鉴意义。
-
Liu Wang;Ruiqing Li;Jiaxin Zhu;Guangdong Bai;Haoyu Wang. A Large-Scale Empirical Study of COVID-19 Themed GitHub Repositories. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC) 以COVID-19为主题的GH开源项目(数量:67k)为其主要的研究对象,研究项目的出现与发展关于时间、地区/国家的变化关系,同时研究了其发展的趋势与流行度的变化。
-
A Deep Dive into the Impact of COVID-19 on Software Development.Paulo Silveira;Umme Ayda Mannan;Eduardo Santana Almeida;Nachi Nagappan;David Lo;Pavneet Singh Kochhar;Cuiyun Gao;Iftekhar Ahmed. IEEE Transactions on Software Engineering 2021 以GH上top100的Java项目为对象展开研究调查,同时辅以问卷调差的方式,主要侧重软件开发者。以对项目的不同操作定义项目的8个特征,分析特征在疫情前后的变化,研究方法较为简单。survey方面,受访者的回答表现出多元化的倾向。
-
Yabing Liu, Chloe Kliman-Silver, and Alan Mislove. The tweets they are a-changin': Evolution of Twitter users and behavior. Proc. of AAAI ICWSM, 2014. 数据集非常大,涵盖2006-2013七年间380亿的推文与3800万用户,已此前对于twitter的研究结果或作为结论、或作为论据进行了大量的十分细致的结合分析,但由于立足点太过宏观,只采用的较简单的研究方法(折线图,也未作定量化的趋势分析),私以为有泛泛而谈之嫌。
-
Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir Filkov. 2015. Quality and productivity outcomes relating to continuous integration in GitHub. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). Association for Computing Machinery, New York, NY, USA, 805–816. DOI:https://doi.org/10.1145/2786805.2786850 聚焦软件编程中“软件集成”的这一步骤,利用GitHub项目中关于流程指标和结果的数据进行持续集成的辨别,同时研究了团队贡献在项目中的影响。
- Understanding "watchers" on GitHub MSR CCF-C
- Sentiment analysis of commit comments in GitHub: an empirical study MSR 14 ccf-c
- Understanding the Factors That Impact the Popularity of GitHub Repositories ICSME16 ccf-b
- Why and how developers fork what from whom in GitHub ESE17 ccf-b
- An insight into the pull requests of GitHub MSR14 ccf-b
- A first look at unfollowing behavior on GitHub IST19 ccf-b
- A study of external community contribution to open-source projects on GitHub msr12 ccfb
- Characterization and Prediction of Popular Projects on GitHub COMPSAC19 ccfc
- An Empirical Evaluation of GitHub Copilot's Code Suggestions MSR22 ccfb
- Mining the Technical Roles of GitHub Users IST21 ccfb
- How Does the Shift to GitHub Impact Project Collaboration? ICSME 16 ccfb
- GitcProc: a tool for processing and classifying GitHub commits ISSTA17 ccfa
- Socio-technical evolution of the Ruby ecosystem in GitHub SANER17 CCF-B
- Developer onboarding in GitHub: the role of prior social links and language experience FSE/ESEC15 ccf-a
- Curating GitHub for engineered software projects ESE17 ccf-b
- RepoSkillMiner: Identifying software expertise from GitHub repositories using Natural Language Processing ASE20 ccf-b
- Understanding inactive yet available assignees in GitHub IST17 CCF-B
- Categorizing the Content of GitHub README Files ESE'19 CCf-B
- Is this GitHub project maintained? Measuring the level of maintenance activity of open-source projects IST'20 CCF-B
- MSR'16 CCF-B
- Whom are you going to call? determinants of @-mentions in Github discussions ESE'20 CCF-B
- The Relationship between Commit Message Detail and Defect Proneness in Java Projects on GitHub MSR'16
- Identifying unmaintained projects in github ESEM'18
- Consistent or not? An investigation of using Pull Request Template in GitHub IST'22 CCF-B
*Predicting Good Configurations for GitHub and Stack Overflow Topic Models MSR'19