Skip to content

np2446/HyperEdit

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

167 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HyperEdit - AI Video Editor

A video editing application that uses AI to process natural language editing requests and verifies LLM responses on-chain using Hyperbolic's Agent Kit.

Screenshot 2025-03-07 at 1 46 40 PM

Pitch

https://www.youtube.com/watch?v=Qemztd5XH18

Prerequisites

  • Node.js 18+
  • Python 3.11+
  • Poetry
  • Docker and Docker Compose
  • Anthropic API Key (for Claude)

Setup

  1. Clone the repository:
git clone https://github.com/yourusername/Project-Jarvis.git
cd Project-Jarvis
  1. Install Python dependencies:
poetry install
  1. Install frontend dependencies:
cd frontend
npm install
  1. Set up environment variables:
# In project root
cp .env.example .env
# Add your Anthropic API key to .env

cd llm_inference_verifier directory
cp .env.example .env
# Add your Alchemy API key to .env

Running the Application

  1. Start the LLM Verification Services:
cd llm_inference_verifier
docker-compose up -d
  1. Start the Backend Server:
# In project root
poetry run python -m uvicorn api.main:app --reload --port 8000
  1. Start the Frontend Development Server:
# In frontend directory
npm run dev
  1. Access the application:

Usage

  1. Upload one or more video files (supported formats: MP4, MOV, AVI)
  2. Enter your editing request in natural language
  3. Click "Process Video" to start the editing process
  4. Once complete, you can:
    • View the processed video
    • Check the on-chain verification details
    • Download the result

Architecture Details

  • Frontend: Next.js application with modern UI components

    • Modern UI built with Radix UI and Tailwind
    • Real-time video processing status updates
    • Seamless video upload and preview
  • Backend: FastAPI server handling video processing and LLM interactions

    • Asynchronous video processing pipeline
    • Integration with Claude 3.5 for natural language understanding
    • File management for video uploads and processed results
    • Error handling and status reporting
  • Video Toolkit: Core processing engine using OpenCV and MoviePy

    • GPU-accelerated video processing
    • Support for multiple video formats
    • Effects processing
    • Customizable video layouts and transitions
  • LLM Verification: Autonomous Verification Service (AVS) powered by Othentic

    • Decentralized verification of LLM responses
    • Multi-attester consensus mechanism
    • Components:
      • Aggregator: Manages consensus and transaction submission
      • Attesters: Verify LLM responses independently
      • Validation Service: Validates response correctness
      • Execution Service: Handles transaction execution

Environment Setup

LLM Verification Environment

The LLM verification service uses Othentic's AVS framework. Set up the .env in llm_inference_verifier:

  1. Set up operator keys:
AVS_GOVERNANCE_ADDRESS=
ATTESTATION_CENTER_ADDRESS=

PRIVATE_KEY_PERFORMER=
PRIVATE_KEY_AGGREGATOR=
PRIVATE_KEY_ATTESTER1=
PRIVATE_KEY_ATTESTER2=
PRIVATE_KEY_ATTESTER3=
PRIVATE_KEY_SYNCER=
PRIVATE_KEY_DEPLOYER=

PINATA_API_KEY=7824585a98fe36414d68
PINATA_SECRET_API_KEY=41a53a837879721969e73008d91180df30dbc66097c7f75f08cd5489176b43ea
IPFS_HOST=https://othentic.mypinata.cloud/ipfs/

OTHENTIC_BOOTSTRAP_ID=12D3KooWBNFG1QjuF3UKAKvqhdXcxh9iBmj88cM5eU2EK5Pa91KB
OTHENTIC_BOOTSTRAP_SEED=97a64de0fb18532d4ce56fb35b730aedec993032b533f783b04c9175d465d9bf
LLM_BEARER_TOKEN=

References

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 67.7%
  • TypeScript 27.4%
  • JavaScript 2.7%
  • HTML 1.4%
  • CSS 0.5%
  • Shell 0.2%
  • Dockerfile 0.1%