This is a package for visualizing and analyzing multiple metabolic models. It also allow users to integrate omic data, metabolic tasks, and medium data with GEMs.
The flux analysis functions in the package are based on cobrapy: https://cobrapy.readthedocs.io/en/latest/
To install directly from PyPI:
pip install pipegem
single model
import pipeGEM as pg
from pipeGEM.utils import load_model
model = load_model("your_model_path") # cobra.Model
pmodel = pg.Model(name_tag="model_name",
model=model)
# Print out model information
print(pmodel)
# Do and plot pFBA result
flux_analysis = pmodel.do_flux_analysis("pFBA")
flux_analysis.plot(
rxn_ids=['rxn_a', 'rxn_b'],
file_name='pfba_flux.png' # can be None if you don't want to save the figure
)multiple models
import pipeGEM as pg
from pipeGEM.utils import load_model
model_a1 = load_model("your_model_path_1")
model_a2 = load_model("your_model_path_2")
model_b1 = load_model("your_model_path_3")
model_b2 = load_model("your_model_path_4")
group = pg.Group({
"group_a": {
"model_a_dmso": model_a1,
"model_a_metformin": model_a2
},
"group_b": {
"model_b_dmso": model_b1,
"model_b_metformin": model_b2
}
},
name_tag="my_group",
treatments={"model_a_dmso": "DMSO",
"model_b_dmso": "DMSO",
"model_a_metformin": "metformin",
"model_b_metformin": "metformin"}
)
# Do and plot pFBA result
flux_analysis = group.do_flux_analysis("pFBA")
flux_analysis.plot(rxn_ids=['rxn_a', 'rxn_b'])Generate context-specific models
import numpy as np
import pipeGEM as pg
from pipeGEM.utils import load_model
from pipeGEM.data import GeneData, synthesis
# initialize model
mod = pg.Model(name_tag="model_name",
model=load_model("your_model_path_1"))
# create dummy transcriptomic data
dummy_data = synthesis.get_syn_gene_data(mod, n_sample=3)
# calculate reaction activity score
gene_data = GeneData(data=dummy_data["sample_0"], # pd.Series or a dict
data_transform=lambda x: np.log2(x), # callable
absent_expression=-np.inf) # value
mod.add_gene_data(name_or_prefix="sample_0", # name of the data
data=gene_data,
or_operation="nanmax", # alternative: nansum
threshold=-np.inf,
absent_value=-np.inf)
# apply GIMME algorithm on the model
gimme_result = mod.integrate_gene_data(data_name="sample_0", integrator="GIMME", high_exp=5*np.log10(2))
context_specific_gem = gimme_result.result_modelPipeGEM also provides a command-line interface for running predefined pipelines using configuration files.
-
Generate Template Configurations: Start by generating template TOML configuration files for a specific pipeline (e.g.,
integration). Replaceintegrationwith the desired pipeline name if needed.python -m pipeGEM.cli -n template -p integration -o ./
This will create a
configsdirectory in the current folder (if it doesn't exist) containing template.tomlfiles likegene_data_conf.toml,model_conf.toml, etc. -
Modify Configurations (Optional): Edit the generated
.tomlfiles in theconfigsdirectory to specify your input file paths, parameters, and desired settings. For example, inmodel_conf.toml, you might specify the path to your metabolic model file. -
Run a Pipeline: Execute a pipeline using the configuration files. For example, to run the model processing pipeline using the configuration in
configs/model_conf.toml:python -m pipeGEM.cli -n model_processing -t configs/model_conf.toml
Or, to run the full integration pipeline:
python -m pipeGEM.cli -n integration \ -g configs/gene_data_conf.toml \ -t configs/model_conf.toml \ -r configs/threshold_conf.toml \ -m configs/mapping_conf.toml \ -i configs/integration_conf.tomlRefer to the generated template files and the specific pipeline documentation for details on required configurations.