Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 10 additions & 8 deletions R/bridge_sampler.R
Original file line number Diff line number Diff line change
Expand Up @@ -263,9 +263,10 @@ bridge_sampler.stanfit <- function(samples = NULL, stanfit_model = samples,
param_types = rep("real", ncol(samples_4_fit)),
transTypes = transTypes,
repetitions = repetitions, cores = cores,
packages = "rstan", maxiter = maxiter, silent = silent,
verbose = verbose,
r0 = 0.5, tol1 = 1e-10, tol2 = 1e-4))
packages = c("rstan", "mvtnorm"),
maxiter = maxiter, silent = silent,
verbose = verbose, r0 = 0.5, tol1 = 1e-10,
tol2 = 1e-4))
} else {
bridge_output <- do.call(what = paste0(".bridge.sampler.", method),
args = list(samples_4_fit = samples_4_fit,
Expand All @@ -278,9 +279,10 @@ bridge_sampler.stanfit <- function(samples = NULL, stanfit_model = samples,
transTypes = transTypes,
repetitions = repetitions, varlist = "stanfit",
envir = sys.frame(sys.nframe()),
cores = cores, packages = "rstan", maxiter = maxiter,
silent = silent, verbose = verbose,
r0 = 0.5, tol1 = 1e-10, tol2 = 1e-4))
cores = cores, packages = c("rstan", "mvtnorm"),
maxiter = maxiter, silent = silent,
verbose = verbose, r0 = 0.5, tol1 = 1e-10,
tol2 = 1e-4))
}

return(bridge_output)
Expand Down Expand Up @@ -490,7 +492,7 @@ bridge_sampler.stanreg <-
bridge_output <- bridge_sampler(samples = samples, log_posterior = .stan_log_posterior,
data = list(stanfit = sf), lb = lb, ub = ub,
repetitions = repetitions, method = method, cores = cores,
use_neff = use_neff, packages = "rstan",
use_neff = use_neff, packages = c("rstan", "mvtnorm"),
maxiter = maxiter, silent = silent,
verbose = verbose)
} else {
Expand All @@ -500,7 +502,7 @@ bridge_sampler.stanreg <-
repetitions = repetitions, varlist = "stanfit",
envir = sys.frame(sys.nframe()), method = method,
cores = cores, use_neff = use_neff,
packages = "rstan", maxiter = maxiter,
packages = c("rstan", "mvtnorm"), maxiter = maxiter,
silent = silent, verbose = verbose)
}
return(bridge_output)
Expand Down
45 changes: 38 additions & 7 deletions R/bridge_sampler_normal.R
Original file line number Diff line number Diff line change
Expand Up @@ -38,12 +38,15 @@

# sample from multivariate normal distribution and evaluate for posterior samples and generated samples
q12 <- dmvnorm(samples_4_iter, mean = m, sigma = V, log = TRUE)
gen_samples <- vector(mode = "list", length = repetitions)
q22 <- vector(mode = "list", length = repetitions)
for (i in seq_len(repetitions)) {
gen_samples[[i]] <- rmvnorm(n_post, mean = m, sigma = V)
colnames(gen_samples[[i]]) <- colnames(samples_4_iter)
q22[[i]] <- dmvnorm(gen_samples[[i]], mean = m, sigma = V, log = TRUE)
if (cores == 1 || repetitions == 1) {
# if cores > 1 and repetitions > 1 we do this below using parallelization
gen_samples <- vector(mode = "list", length = repetitions)
q22 <- vector(mode = "list", length = repetitions)
for (i in seq_len(repetitions)) {
gen_samples[[i]] <- rmvnorm(n_post, mean = m, sigma = V)
colnames(gen_samples[[i]]) <- colnames(samples_4_iter)
q22[[i]] <- dmvnorm(gen_samples[[i]], mean = m, sigma = V, log = TRUE)
}
}

# evaluate log of likelihood times prior for posterior samples and generated samples
Expand All @@ -57,6 +60,19 @@
}
} else if (cores > 1) {
if ( .Platform$OS.type == "unix") {
# sample from multivariate normal distribution and evaluate for posterior samples and generated samples
if (repetitions > 1) {
gen_samples <- parallel::mclapply(seq_len(repetitions), FUN =
function(x) rmvnorm(n_post, mean = m, sigma = V),
mc.preschedule = FALSE,
mc.cores = cores)
sapply(seq_along(gen_samples), function(i) colnames(gen_samples[[i]]) <- colnames(samples_4_iter))
q22 <- parallel::mclapply(seq_along(gen_samples), FUN =
function(i) dmvnorm(gen_samples[[i]], mean = m, sigma = V, log = TRUE),
mc.preschedule = FALSE,
mc.cores = cores)
}

split1 <- .split_matrix(matrix=.invTransform2Real(samples_4_iter, lb, ub, param_types), cores=cores)
q11 <- parallel::mclapply(split1, FUN =
function(x) apply(x, 1, log_posterior, data = data, ...),
Expand All @@ -73,8 +89,23 @@
}
} else {
cl <- parallel::makeCluster(cores, useXDR = FALSE)
on.exit(parallel::stopCluster(cl))
sapply(packages, function(x) parallel::clusterCall(cl = cl, "require", package = x,
character.only = TRUE))

if (repetitions > 1) {
# sample from multivariate normal distribution and evaluate for posterior samples and generated samples
parallel::clusterExport(cl = cl, varlist = c("m", "V", "n_post"), envir = environment())
gen_samples <- parallel::clusterApplyLB(cl = cl,
x = seq_len(repetitions),
fun = function(i) rmvnorm(n_post, mean = m, sigma = V))
sapply(seq_along(gen_samples), function(i) colnames(gen_samples[[i]]) <- colnames(samples_4_iter))
parallel::clusterExport(cl = cl, varlist = "gen_samples", envir = environment())
q22 <- parallel::clusterApplyLB(cl = cl,
x = seq_along(gen_samples),
fun = function(i) dmvnorm(gen_samples[[i]], mean = m, sigma = V, log = TRUE))
}

parallel::clusterExport(cl = cl, varlist = varlist, envir = envir)

if ( ! is.null(rcppFile)) {
Expand All @@ -91,7 +122,7 @@
q21[[i]] <- parallel::parRapply(cl = cl, x = .invTransform2Real(gen_samples[[i]], lb, ub, param_types), log_posterior,
data = data, ...) + .logJacobian(gen_samples[[i]], transTypes, lb, ub)
}
parallel::stopCluster(cl)
# parallel::stopCluster(cl)
}
}
if(verbose) {
Expand Down
50 changes: 39 additions & 11 deletions R/bridge_sampler_warp3.R
Original file line number Diff line number Diff line change
Expand Up @@ -39,21 +39,23 @@

# sample from multivariate normal distribution and evaluate for posterior samples and generated samples
q12 <- dmvnorm((samples_4_iter - matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE)) %*%
t(solve(L)), sigma = diag(ncol(samples_4_fit)), log = TRUE)
q22 <- vector(mode = "list", length = repetitions)
gen_samples <- vector(mode = "list", length = repetitions)
for (i in seq_len(repetitions)) {
gen_samples[[i]] <- rmvnorm(n_post, sigma = diag(ncol(samples_4_fit)))
colnames(gen_samples[[i]]) <- colnames(samples_4_iter)
q22[[i]] <- dmvnorm(gen_samples[[i]], sigma = diag(ncol(samples_4_fit)), log = TRUE)
t(solve(L)), sigma = diag(ncol(samples_4_fit)), log = TRUE)
if (cores == 1 || repetitions == 1) {
# if cores > 1 or repetitions > 1, we do this below using parallelization
q22 <- vector(mode = "list", length = repetitions)
gen_samples <- vector(mode = "list", length = repetitions)
for (i in seq_len(repetitions)) {
gen_samples[[i]] <- rmvnorm(n_post, sigma = diag(ncol(samples_4_fit)))
colnames(gen_samples[[i]]) <- colnames(samples_4_iter)
q22[[i]] <- dmvnorm(gen_samples[[i]], sigma = diag(ncol(samples_4_fit)), log = TRUE)
}
}

e <- as.brob( exp(1) )

# evaluate log of likelihood times prior for posterior samples and generated samples
q21 <- vector(mode = "list", length = repetitions)
if (cores == 1) {

q11 <- log(e^(apply(.invTransform2Real(samples_4_iter, lb, ub, param_types), 1, log_posterior,
data = data,...) + .logJacobian(samples_4_iter, transTypes, lb, ub)) +
e^(apply(.invTransform2Real(matrix(2*m, nrow = n_post, ncol = length(m), byrow = TRUE) -
Expand All @@ -72,6 +74,18 @@
}
} else if (cores > 1) {
if ( .Platform$OS.type == "unix") {
if (repetitions > 1) {
gen_samples <- parallel::mclapply(seq_len(repetitions), FUN =
function(x) rmvnorm(n_post, sigma = diag(ncol(samples_4_fit))),
mc.preschedule = FALSE,
mc.cores = cores)
sapply(seq_along(gen_samples), function(i) colnames(gen_samples[[i]]) <- colnames(samples_4_iter))
q22 <- parallel::mclapply(seq_along(gen_samples), FUN =
function(i) dmvnorm(gen_samples[[i]], sigma = diag(ncol(samples_4_fit)), log = TRUE),
mc.preschedule = FALSE,
mc.cores = cores)
}

split1a <- .split_matrix(matrix=.invTransform2Real(samples_4_iter, lb, ub, param_types), cores=cores)
split1b <- .split_matrix(matrix=.invTransform2Real(
matrix(2*m, nrow = n_post, ncol = length(m), byrow = TRUE) - samples_4_iter, lb, ub, param_types
Expand Down Expand Up @@ -113,9 +127,23 @@
tmp_mat2, transTypes, lb, ub)))
}
} else {
# sample from multivariate normal distribution and evaluate for posterior samples and generated samples
cl <- parallel::makeCluster(cores, useXDR = FALSE)
on.exit(parallel::stopCluster(cl))
sapply(packages, function(x) parallel::clusterCall(cl = cl, "require", package = x, character.only = TRUE))


if (repetitions > 1) {
parallel::clusterExport(cl = cl, varlist = c("n_post", "samples_4_fit"), envir = environment())
gen_samples <- parallel::clusterApplyLB(cl = cl,
x = seq_len(repetitions),
fun = function(x) rmvnorm(n_post, sigma = diag(ncol(samples_4_fit))))
sapply(seq_along(gen_samples), function(i) colnames(gen_samples[[i]]) <- colnames(samples_4_iter))
parallel::clusterExport(cl = cl, varlist = "gen_samples", envir = environment())
q22 <- parallel::clusterApplyLB(cl = cl,
x = seq_along(gen_samples),
fun = function(i) dmvnorm(gen_samples[[i]], sigma = diag(ncol(samples_4_fit)), log = TRUE))
}

parallel::clusterExport(cl = cl, varlist = varlist, envir = envir)

if ( ! is.null(rcppFile)) {
Expand Down Expand Up @@ -152,7 +180,7 @@
.logJacobian(matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) +
gen_samples[[i]] %*% t(L), transTypes, lb, ub)))
}
parallel::stopCluster(cl)
# parallel::stopCluster(cl)
}

}
Expand Down