REST api setup for industrial robot work zone estimation and control. Include face detection/recognition module, object detection module and zone estimation module.
Clone repo and recursively update submodules
- Download weight from Google Drive
- Move weights to the 'weights' folder inside parent folder
MongoDB used to store face descriptors for face recognition subsystem
Download MongoDB docker image
$ docker run --name mongo -d mongo:tagAnd then start it
$ docker run -d -p 27017:27017 mongoTo start server use Flask CLI
$ flask runor use python
$ python run.pyFirst update submodules
$ git submodule update --init --recursiveMove to
robot_work_zone_estimationdirectory
$ cd robot_work_zone_estimationFollow instructions from submodule README.md
- Provide faces for face recognition subsystem
Use the following directory structure:
βββ workzone # Parent directory
βββ face_database # Directory with all persons
β βββ person_name_1 # Each person should have it's own folder
β β βββ img1.jpg
β β βββ img2.jpg
β β βββ img3.jpg
β β βββ ...
β βββ person_name_2
β β βββ img1.jpg
β β βββ img2.jpg
β β βββ img3.jpg
β β βββ ...
β βββ ...
βββ ...
- Start server
- Route to https://127.0.0.1:5000/fill_db
- Done