Skip to content

Production-ready finance library for portfolio construction, risk analytics, and quantitative metrics. Modular TypeScript toolkit for DeFi and TradFi risk assessment.

License

Notifications You must be signed in to change notification settings

railpath/finance-toolkit

Repository files navigation

Railpath

@railpath/finance-toolkit

A comprehensive TypeScript library for portfolio management and risk analytics.

@railpath/finance-toolkit provides a complete collection of financial metrics with focus on modularity, type-safety, and performance.

Part of the RailPath open source ecosystem – building financial infrastructure that belongs to everyone.


Features

Portfolio Performance Metrics

  • Time-Weighted Return (TWR) – Performance independent of cash flows
  • Money-Weighted Return (MWR) – IRR-based performance with cash flow consideration (enhanced with Damped Newton-Raphson and Bisection fallback for robust convergence)
  • Portfolio Metrics – Comprehensive portfolio analysis (CAGR, Sharpe, Sortino, VaR, ES)
  • Performance Attribution – Factor-based performance analysis
  • Portfolio Optimization – Mean-variance optimization
  • Portfolio Rebalancing – Rebalancing strategies and trade calculations
  • Equal Weight Portfolio – Equal weight allocation strategies
  • Returns Calculation – Various return calculation methods
  • Risk Metrics – Portfolio-level risk analysis
  • Information Ratio – Active return vs. tracking error
  • Tracking Error – Deviation from benchmark

Risk Metrics

  • Value at Risk (VaR) – Historical, Parametric, Monte Carlo methods
  • Expected Shortfall (CVaR) – Conditional Value at Risk
  • Maximum Drawdown – Largest loss from peak to trough
  • Alpha & Beta – CAPM-based performance metrics
  • Sharpe Ratio – Risk-adjusted returns
  • Sortino Ratio – Downside risk-adjusted returns
  • Calmar Ratio – Return vs. maximum drawdown
  • Standard Deviation – Classical volatility measure
  • Semideviation – Downside volatility measure
  • Skewness & Kurtosis – Distribution shape analysis
  • VaR 95% & 99% – Pre-configured confidence levels

Technical Indicators

  • SMA (Simple Moving Average) – Trend-following indicator
  • EMA (Exponential Moving Average) – Weighted trend indicator
  • MACD (Moving Average Convergence Divergence) – Trend momentum indicator
  • RSI (Relative Strength Index) – Momentum oscillator (0-100)
  • Stochastic Oscillator – Momentum indicator (%K, %D)
  • Williams %R – Momentum oscillator (-100 to 0)
  • Bollinger Bands – Volatility-based price channels
  • ATR (Average True Range) – Volatility measurement

Volatility Calculations

  • Standard Deviation – Classical volatility
  • EWMA Volatility – Exponentially Weighted Moving Average
  • Parkinson Volatility – High-Low range based
  • Garman-Klass Volatility – OHLC-based volatility

Portfolio Analysis

  • Correlation Matrix – Asset correlations
  • Covariance Matrix – Asset covariances
  • Portfolio Volatility – Total portfolio risk
  • Portfolio Optimization – Mean-variance optimization
  • Portfolio Rebalancing – Rebalancing strategies
  • Equal Weight Allocation – Equal weight strategies
  • Performance Attribution – Factor-based analysis

Machine Learning - Regime Detection

  • Hidden Markov Model (HMM) – Market regime identification (bullish/bearish/neutral)
  • Feature Extraction – Automatic feature engineering from price data
  • Flexible Configuration – 2-5+ states with custom labels
  • Advanced Features – Returns, Volatility, RSI, MACD, EMA support
  • Production-Ready – Numerically stable algorithms, zero runtime dependencies
  • Low-Level API – Forward, Backward, Viterbi, Baum-Welch algorithms for advanced users

Language Support

Written in TypeScript, works seamlessly in JavaScript projects. Type definitions included for IDE autocomplete.

Installation

npm install @railpath/finance-toolkit

Universal Compatibility

The library is published as CommonJS for maximum compatibility across all environments:

  • ✅ Modern ESM Projects - import works seamlessly with CommonJS
  • ✅ Jest & Testing - works out-of-the-box, no configuration needed
  • ✅ TypeScript Projects - full type support included
  • ✅ All Bundlers - Webpack, Vite, Rollup, esbuild all support CommonJS
  • ✅ Node.js - works in any Node.js version
// Modern ESM syntax - works!
import { calculateSharpeRatio } from '@railpath/finance-toolkit';

// CommonJS - works!
const { calculateSharpeRatio } = require('@railpath/finance-toolkit');

Why CommonJS? It's the most compatible format. Modern tools can import CommonJS packages, and tree-shaking works just fine for libraries that export pure functions like this one.

Quick Start

Portfolio Performance

import { 
  calculateTimeWeightedReturn, 
  calculateMoneyWeightedReturn 
} from '@railpath/finance-toolkit';

// Time-Weighted Return (TWR)
const twr = calculateTimeWeightedReturn({
  portfolioValues: [1000, 1100, 1200, 1150],
  cashFlows: [0, 100, 0, -50],
  annualizationFactor: 252
});

// Money-Weighted Return (MWR) - IRR
// Uses robust numerical methods (Damped Newton-Raphson with Bisection fallback)
const mwr = calculateMoneyWeightedReturn({
  cashFlows: [1000, 100, -50],
  dates: [new Date('2023-01-01'), new Date('2023-06-01'), new Date('2023-12-01')],
  finalValue: 1150,
  initialValue: 0,
  maxIterations: 100,
  tolerance: 1e-6
});
console.log(mwr.mwr); // Period return
console.log(mwr.annualizedMWR); // Annualized return
console.log(mwr.method); // 'newton-raphson' or 'bisection'
console.log(mwr.iterations); // Number of iterations

Risk Analysis

import { 
  calculateVaR, 
  calculateSharpeRatio, 
  calculateMaxDrawdown 
} from '@railpath/finance-toolkit';

// Value at Risk (95% Confidence)
const var95 = calculateVaR({
  returns: [0.01, 0.02, -0.01, 0.03, -0.02],
  confidenceLevel: 0.95,
  method: 'historical'
});

// Sharpe Ratio
const sharpe = calculateSharpeRatio({
  returns: [0.01, 0.02, -0.01, 0.03],
  riskFreeRate: 0.02,
  annualizationFactor: 252
});

// Maximum Drawdown
const maxDD = calculateMaxDrawdown({
  portfolioValues: [1000, 1100, 1050, 1200, 1150]
});

Portfolio Analysis

import { 
  calculateCorrelationMatrix, 
  calculatePortfolioVolatility 
} from '@railpath/finance-toolkit';

// Asset Correlation Matrix
const correlation = calculateCorrelationMatrix({
  assetReturns: [
    [0.01, 0.02, -0.01], // Asset 1
    [0.015, 0.025, -0.005] // Asset 2
  ]
});

// Portfolio Volatility
const portfolioVol = calculatePortfolioVolatility({
  weights: [0.6, 0.4],
  covarianceMatrix: [[0.04, 0.02], [0.02, 0.09]]
});

Technical Indicators

import { 
  calculateSMA, 
  calculateEMA, 
  calculateMACD,
  calculateRSI, 
  calculateStochastic,
  calculateWilliamsR,
  calculateBollingerBands, 
  calculateATR 
} from '@railpath/finance-toolkit';

// Simple Moving Average (SMA)
const sma = calculateSMA({
  prices: [100, 102, 101, 103, 105, 104, 106],
  period: 5
});

// Exponential Moving Average (EMA)
const ema = calculateEMA({
  prices: [100, 102, 101, 103, 105, 104, 106],
  period: 5
});

// MACD (Moving Average Convergence Divergence)
const macd = calculateMACD({
  prices: [100, 102, 101, 103, 105, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114],
  fastPeriod: 12,
  slowPeriod: 26,
  signalPeriod: 9
});

// Relative Strength Index (RSI)
const rsi = calculateRSI({
  prices: [100, 102, 101, 103, 105, 104, 106],
  period: 14
});

// Stochastic Oscillator
const stochastic = calculateStochastic({
  high: [102, 103, 101, 104, 105, 106, 107],
  low: [98, 99, 97, 100, 101, 102, 103],
  close: [100, 102, 100, 103, 104, 105, 106],
  kPeriod: 14,
  dPeriod: 3
});

// Williams %R
const williamsR = calculateWilliamsR({
  high: [102, 103, 101, 104, 105, 106, 107],
  low: [98, 99, 97, 100, 101, 102, 103],
  close: [100, 102, 100, 103, 104, 105, 106],
  period: 14
});

// Bollinger Bands
const bollinger = calculateBollingerBands({
  prices: [100, 102, 101, 103, 105, 104, 106],
  period: 20,
  stdDevMultiplier: 2
});

Machine Learning - Regime Detection

import { detectRegime } from '@railpath/finance-toolkit';

// Simple regime detection (3 states: bearish, neutral, bullish)
const result = detectRegime(prices);

console.log(result.currentRegime); // 'bullish'
console.log(result.confidence); // 0.85
console.log(result.regimes); // ['neutral', 'neutral', 'bullish', ...]

// Advanced with custom features
const advancedResult = detectRegime(prices, {
  numStates: 4,
  features: ['returns', 'volatility', 'rsi'],
  featureWindow: 20,
  stateLabels: ['strong_bearish', 'weak_bearish', 'weak_bullish', 'strong_bullish']
});

More Examples

// Average True Range (ATR)
const atr = calculateATR({
  high: [101, 103, 102, 104, 106, 105, 107],
  low: [99, 101, 100, 102, 104, 103, 105],
  close: [100, 102, 101, 103, 105, 104, 106],
  period: 14
});

Use Cases

Portfolio Manager

  • Performance attribution and benchmarking
  • Risk-adjusted return optimization
  • Cash flow impact analysis

Risk Manager

  • VaR and Expected Shortfall monitoring
  • Stress testing and scenario analysis
  • Portfolio concentration risk

Quantitative Analyst

  • Factor model development
  • Volatility forecasting
  • Correlation structure analysis

Financial Advisor

  • Client portfolio performance
  • Risk assessment and reporting
  • Asset allocation optimization

Technical Analyst

  • Trend analysis with SMA, EMA, and MACD
  • Momentum indicators (RSI, Stochastic, Williams %R) for market timing
  • Volatility-based trading signals with Bollinger Bands and ATR

TypeScript Support

All functions are fully typed with Zod validation and modular schema architecture:

import type { 
  TimeWeightedReturnOptions, 
  TimeWeightedReturnResult,
  SMAOptions,
  SMAResult,
  RSIOptions,
  RSIResult
} from '@railpath/finance-toolkit';

// Type-safe Options
const options: TimeWeightedReturnOptions = {
  portfolioValues: [1000, 1100, 1200],
  cashFlows: [0, 100, 0],
  annualizationFactor: 252
};

// Type-safe Results
const result: TimeWeightedReturnResult = calculateTimeWeightedReturn(options);
console.log(result.twr); // number
console.log(result.annualizedTWR); // number
console.log(result.periodReturns); // number[]

// Technical Indicators with separate Options/Result types
const smaOptions: SMAOptions = {
  prices: [100, 102, 101, 103, 105],
  period: 3
};

const smaResult: SMAResult = calculateSMA(smaOptions);
console.log(smaResult.sma); // number[]
console.log(smaResult.count); // number
console.log(smaResult.indices); // number[]

// MACD with multiple periods
const macdOptions: MACDOptions = {
  prices: [100, 102, 101, 103, 105, 104, 106],
  fastPeriod: 12,
  slowPeriod: 26,
  signalPeriod: 9
};

const macdResult: MACDResult = calculateMACD(macdOptions);
console.log(macdResult.macdLine); // number[]
console.log(macdResult.signalLine); // number[]
console.log(macdResult.histogram); // number[]

Documentation

For detailed implementation specifications, see:


API Reference

Portfolio Performance

Function Description Input Output
calculateTimeWeightedReturn TWR Performance Portfolio Values, Cash Flows TWR, Annualized TWR, Period Returns
calculateMoneyWeightedReturn MWR Performance (IRR) Cash Flows, Dates, Final Value MWR, Annualized MWR, NPV, Iterations, Method
calculatePortfolioMetrics Comprehensive Analysis Portfolio Values, Risk-Free Rate CAGR, Sharpe, Sortino, VaR, ES, Volatility
calculatePerformanceAttribution Factor Analysis Returns, Factor Returns Factor Contributions, Active Return
calculatePortfolioOptimization Mean-Variance Optimization Expected Returns, Covariance Matrix Optimal Weights, Risk-Return
calculatePortfolioRebalancing Rebalancing Strategies Current Weights, Target Weights New Weights, Trade Amounts
calculateEqualWeightPortfolio Equal Weight Allocation Asset Count Equal Weights, Portfolio Metrics
calculateReturns Return Calculations Prices, Dates Various Return Types
calculateRiskMetrics Portfolio Risk Analysis Returns, Risk-Free Rate Risk Metrics, VaR, ES
calculateInformationRatio Active Return Analysis Portfolio Returns, Benchmark Returns Information Ratio, Active Return
calculateTrackingError Benchmark Deviation Portfolio Returns, Benchmark Returns Tracking Error, Active Risk

Risk Metrics

Function Description Methods
calculateVaR Value at Risk Historical, Parametric, Monte Carlo
calculateVaR95 VaR 95% Confidence Historical, Parametric, Monte Carlo
calculateVaR99 VaR 99% Confidence Historical, Parametric, Monte Carlo
calculateHistoricalVaR Historical VaR Historical Method
calculateParametricVaR Parametric VaR Normal Distribution
calculateMonteCarloVaR Monte Carlo VaR Simulation Method
calculateHistoricalExpectedShortfall Historical ES Historical Method
calculateParametricExpectedShortfall Parametric ES Normal Distribution
calculateSharpeRatio Risk-Adjusted Returns Standard, Annualized
calculateSortinoRatio Downside Risk-Adjusted Standard, Annualized
calculateSemideviation Downside Volatility Zero/Mean Threshold
calculateCalmarRatio Return vs. Drawdown Calmar Ratio
calculateSkewness Distribution Asymmetry Third Moment
calculateKurtosis Distribution Tailedness Fourth Moment (Excess)
calculateAlpha CAPM Alpha Asset vs. Benchmark
calculateBeta CAPM Beta Asset vs. Benchmark
calculateMaxDrawdown Maximum Loss Peak-to-Trough Analysis
calculateStandardDeviation Standard Deviation Classical Measure

Volatility

Function Description Input
calculateVolatility Standard Deviation Returns Array
calculateEWMAVolatility Exponentially Weighted Returns, Lambda
calculateParkinsonVolatility High-Low Range High, Low Prices
calculateGarmanKlassVolatility OHLC-based Open, High, Low, Close
calculateStandardDeviation Classical Measure Returns Array

Portfolio Analysis

Function Description Input
calculateCorrelationMatrix Asset Correlations Asset Returns Matrix
calculateCovarianceMatrix Asset Covariances Asset Returns Matrix
calculatePortfolioVolatility Portfolio Risk Weights, Covariance Matrix

Technical Indicators

Function Description Input Output
calculateSMA Simple Moving Average Prices Array, Period SMA Values, Indices
calculateEMA Exponential Moving Average Prices Array, Period EMA Values, Smoothing Factor
calculateMACD Moving Average Convergence Divergence Prices Array, Fast/Slow/Signal Periods MACD Line, Signal Line, Histogram
calculateRSI Relative Strength Index Prices Array, Period RSI Values (0-100), Gains/Losses
calculateStochastic Stochastic Oscillator High/Low/Close Arrays, K/D Periods %K, %D, Highest High, Lowest Low
calculateWilliamsR Williams %R High/Low/Close Arrays, Period Williams %R Values (-100 to 0)
calculateBollingerBands Bollinger Bands Prices Array, Period, StdDev Multiplier Upper/Middle/Lower Bands, %B
calculateATR Average True Range High/Low/Close Arrays, Period ATR Values, True Range

Machine Learning - Regime Detection

Function Description Input Output
detectRegime HMM-based Market Regime Detection Prices Array, Options Current Regime, Regime Sequence, Probabilities, Model
trainHMM Train Hidden Markov Model Feature Matrix, Options Trained HMM Model
extractFeatures Extract Features from Prices Prices Array, Feature Config Standardized Feature Matrix

Advanced HMM Algorithms: forward, backward, viterbi, baumWelch

📖 Full Regime Detection Documentation


Testing

# Run all tests
npm test

# Run tests in watch mode
npm run test:watch

# Run tests with coverage
npm run test:coverage

# Run integration tests
npm run test:integration

# Run integration tests in watch mode
npm run test:integration:watch

# Run performance benchmarks
npm run test:performance

# Run performance benchmarks in watch mode
npm run test:performance:watch

Test Coverage: 1300+ Tests across 65 test files

Battle Testing

This library uses a comprehensive battle testing approach to ensure accuracy by comparing TypeScript implementations against Python equivalents using battle-tested libraries (numpy, scipy, pandas).

Performance Testing

Comprehensive performance benchmarks test functions across different dataset sizes to ensure optimal performance and detect regressions. Performance tests measure execution time, memory usage, and throughput for various dataset sizes to identify bottlenecks and ensure scalability. See testing/README.md for details on the performance testing framework.


Build

# Build for production
npm run build

# Development with watch mode
npm run dev

Output: TypeScript declarations and optimized JavaScript modules


Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Implement tests for new functions
  4. Ensure all tests pass
  5. Create a pull request

License

MIT License - see LICENSE for details.

About

Production-ready finance library for portfolio construction, risk analytics, and quantitative metrics. Modular TypeScript toolkit for DeFi and TradFi risk assessment.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published