This section explains the general steps followed in an image-processing workflow, regardless of the programming language or library.
┌────────────────────┐
│ Start Program │
└─────────┬──────────┘
│
▼
┌────────────────────────┐
│ 1. Import Libraries │
└─────────┬──────────────┘
│
▼
┌────────────────────────────┐
│ 2. Load Input Image │
└──────────┬─────────────────┘
│
▼
┌──────────────────────────────┐
│ 3. Convert to Grayscale? │
│ (if required) │
└──────────┬───────────────────┘
│
▼
┌───────────────────────────────┐
│ 4. Pre-processing │
│ - Resize │
│ - Noise Reduction (Blur) │
└──────────┬────────────────────┘
│
▼
┌───────────────────────────────┐
│ 5. Enhancement (Optional) │
│ - Sharpen │
│ - Histogram Equalization │
└──────────┬────────────────────┘
│
▼
┌────────────────────────────────┐
│ 6. Image Processing / Analysis │
│ - Edge Detection │
│ - Thresholding │
│ - Contour Detection │
└──────────┬─────────────────────┘
│
▼
┌──────────────────────────────┐
│ 7. Post-processing (Optional)│
│ - Dilation / Erosion │
│ - Smoothing │
└──────────┬───────────────────┘
│
▼
┌──────────────────────────────┐
│ 8. Display Results │
└──────────┬───────────────────┘
│
▼
┌──────────────────────────────┐
│ 9. Save Output Image │
└──────────┬───────────────────┘
│
▼
┌──────────────┐
│ End │
└──────────────┘
Before processing images, load the required Python libraries such as:
- OpenCV (
cv2) - NumPy
- Pillow (optional)
import cv2
import numpy as npRead the input image from the local directory or a URL.
image = cv2.imread("image.jpg")Many operations need grayscale conversion:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)Prepare the image by applying filters or corrections.
resized = cv2.resize(image, (400, 400))blur = cv2.GaussianBlur(gray, (5, 5), 0)Techniques to improve image quality:
equalized = cv2.equalizeHist(gray)kernel = np.array([[0, -1, 0],
[-1, 5,-1],
[0, -1, 0]])
sharpened = cv2.filter2D(image, -1, kernel)Perform operations to extract useful information.
edges = cv2.Canny(gray, 100, 200)_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)Refine the processed image.
- Dilation
- Erosion
- Closing
- Smoothing after detection
kernel = np.ones((3,3), np.uint8)
dilated = cv2.dilate(thresh, kernel, iterations=1)Show the final or intermediate image:
cv2.imshow("Output", edges)
cv2.waitKey(0)
cv2.destroyAllWindows()cv2.imwrite("output.jpg", edges)