Skip to content

thorwhalen/aix

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

65 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AIX: Artificial Intelligence eXtensions

A clean, pythonic facade for common AI operations that abstracts away provider-specific details and complexities.

Philosophy: Make AI interactions as simple and intuitive as Python itself, while maintaining the power and flexibility needed for production use.

Installation

pip install aix

Quick Start

from aix import chat, embeddings, prompt_func, models
from aix import generate_image, text_to_speech, transcribe

# Simple chat
response = chat("What is 2+2?")
print(response)  # "The answer is 4."

# Create prompt-based functions
translate = prompt_func("Translate to French: {text}")
result = translate(text="Hello world")
print(result)  # "Bonjour le monde"

# Get embeddings
vecs = list(embeddings(["hello", "world"]))
print(len(vecs))  # 2

# Generate images
image = generate_image("A serene mountain landscape")
image.save("landscape.png")

# Text to speech
audio = text_to_speech("Hello, world!")
audio.save("hello.mp3")

# Speech to text
text = transcribe("recording.mp3")

# Discover available models
models.discover()
print(list(models)[:5])  # ['openai/gpt-4o', 'openai/gpt-4o-mini', ...]

Core Features

1. Chat Interface

Clean, provider-agnostic chat completions:

from aix import chat

# Simple text prompt
response = chat("Explain quantum computing in one sentence")

# With specific model
response = chat("Hello!", model="gpt-4o-mini")

# With message history
messages = [
    {"role": "user", "content": "My name is Alice"},
    {"role": "assistant", "content": "Nice to meet you, Alice!"},
    {"role": "user", "content": "What's my name?"}
]
response = chat(messages, model="gpt-4o")

# Streaming responses
for chunk in chat("Count to 5", stream=True):
    print(chunk, end='', flush=True)

# Stateful conversations
from aix import chat_with_history

session = chat_with_history("You are a helpful math tutor")
response = session.send("What is 2+2?")
response = session.send("And if I add 3 to that?")  # Remembers context

2. Embeddings

Generate vector embeddings for semantic search and similarity:

from aix import embeddings, embed, cosine_similarity, find_most_similar

# Batch embeddings
texts = ["cat", "dog", "bird"]
vecs = list(embeddings(texts))

# Single text
vec = embed("Hello, world!")

# Compute similarity
v1 = embed("cat")
v2 = embed("kitten")
similarity = cosine_similarity(v1, v2)  # High similarity

# Find most similar documents
query = "What is machine learning?"
docs = [
    "Machine learning is a type of AI",
    "Python is a programming language",
    "Neural networks are used in deep learning"
]
results = find_most_similar(query, docs, top_k=2)
# Returns: [('Machine learning is a type of AI', 0.95), ...]

# Caching for efficiency
from aix import EmbeddingCache

cache = EmbeddingCache()
v1 = cache.embed("hello")  # API call
v2 = cache.embed("hello")  # From cache

3. Prompt-Based Functions

Transform natural language prompts into reusable Python functions:

from aix import prompt_func, prompt_to_text, prompt_to_json

# Simple text generation
summarize = prompt_func("Summarize this text: {text}")
summary = summarize(text="Long article...")

# Structured output
extract_person = prompt_func(
    "Extract person information from: {text}",
    output_schema={"name": str, "age": int, "email": str}
)
result = extract_person(text="Contact John at john@example.com. He is 30 years old.")
# Returns: {'name': 'John', 'age': 30, 'email': 'john@example.com'}

# Multiple parameters
compare = prompt_func(
    "Compare {item1} and {item2} in terms of {aspect}"
)
result = compare(
    item1="Python",
    item2="JavaScript",
    aspect="learning curve"
)

# Pre-built common functions
from aix import common_funcs

summary = common_funcs.summarize(text="Long article...")
keywords = common_funcs.extract_keywords(text="Article about AI and ML")
sentiment = common_funcs.sentiment(text="I love this product!")

# Create custom collections
from aix import PromptFuncs

my_funcs = PromptFuncs(model="gpt-4o")
my_funcs.add('analyze', "Analyze this code: {code}")
my_funcs.add('fix_bugs', "Fix bugs in: {code}")

result = my_funcs.analyze(code="def foo(): return bar")

4. Model Discovery & Selection

Discover and filter models across providers:

from aix import models

# Discover available models
models.discover('openrouter')  # Fetch 400+ models from OpenRouter

# List all models
all_models = list(models)

# Get specific model info
info = models['openai/gpt-4o']
print(info.provider)  # 'openai'
print(info.context_size)  # 128000

# Filter models
openai_models = models.filter(provider='openai')
cheap_models = models.filter(
    custom_filter=lambda m: m.cost_per_token.get('input', 0) < 0.001
)
local_models = models.filter(is_local=True)

# Search models
results = models.search('gpt-4')
results = models.search('claude')

# Get recommendations
recommended = models.recommend(
    task='chat',
    max_cost_per_mtok=5.0,
    min_context_size=16000
)

# Use with chat
model = models['gpt-4o-mini']
response = chat("Hello", model=model.id)

5. Batch Operations

Process multiple requests efficiently:

from aix import batch_chat, batch_embeddings, BatchProcessor

# Batch chat
prompts = ["What is 2+2?", "What is 3+3?", "What is 5+5?"]
results = list(batch_chat(prompts, batch_size=10, max_workers=5))

# Batch embeddings
texts = ["hello", "world", "foo", "bar"] * 100
vectors = list(batch_embeddings(
    texts,
    batch_size=20,
    show_progress=True
))

# Generic batch processing
from aix import batch_process

def analyze(text):
    return chat(f"Analyze sentiment: {text}")

texts = ["I love it!", "It's okay", "Terrible"]
results = list(batch_process(
    texts,
    analyze,
    batch_size=5,
    retry_attempts=3
))

# Stateful batch processor
processor = BatchProcessor(show_progress=True)
results = processor.process_chats(prompts)
processor.save_results("output.json")

6. Image Generation

Generate images from text descriptions:

from aix import generate_image, generate_images

# Simple image generation
image = generate_image("A serene mountain landscape at sunset")
image.save("landscape.png")

# High quality with DALL-E 3
image = generate_image(
    "Abstract art with vibrant colors",
    model="dall-e-3",
    quality="hd",
    style="vivid"
)

# Generate multiple variations
images = generate_images(
    "A cute robot waving hello",
    n=3,
    size="512x512"
)
for i, img in enumerate(images):
    img.save(f"robot_{i}.png")

# Edit existing images
from aix import edit_image

edited = edit_image(
    "photo.jpg",
    "Add a rainbow in the sky",
    mask_path="sky_mask.png"
)

# Create variations
from aix import create_variation

variations = create_variation("original.png", n=3)

7. Audio Operations

Text-to-speech and speech-to-text:

from aix import text_to_speech, transcribe, transcribe_with_timestamps

# Text to speech
audio = text_to_speech("Hello, world!")
audio.save("hello.mp3")

# Different voices
audio = text_to_speech(
    "This is a test",
    voice="nova",
    speed=1.2
)

# Transcribe audio
text = transcribe("recording.mp3")
print(text)  # "This is the transcribed text"

# With language hint
text = transcribe("spanish_audio.mp3", language="es")

# Detailed transcription with timestamps
result = transcribe_with_timestamps("lecture.mp3")
for segment in result.segments:
    print(f"[{segment['start']:.2f}] {segment['text']}")

# Translate audio to English
from aix import translate_audio

english_text = translate_audio("spanish_audio.mp3")

8. Video Generation (Coming Soon)

Video generation with provider-specific implementations:

from aix import generate_video, get_video_providers

# Check available providers
providers = get_video_providers()
print(providers)  # ['runway', 'pika', ...]

# Generate video (requires provider setup)
video = generate_video(
    "A cat walking through a garden",
    duration=5,
    resolution="1920x1080"
)
video.save("cat_video.mp4")

# Animate static image
from aix import animate_image_to_video

video = animate_image_to_video(
    "landscape.jpg",
    prompt="Gentle camera pan across the scene"
)

Note: Video generation requires additional provider setup (Runway, Pika, etc.) and API keys.

OpenRouter Integration

OpenRouter provides a single API key for 400+ models from 60+ providers. This is recommended for:

  • Getting started quickly - One key vs. managing many
  • Experimenting - Easy access to models from OpenAI, Anthropic, Google, etc.
  • Production flexibility - Switch providers without code changes

Setup

  1. Get API key from https://openrouter.ai
  2. Set environment variable:
    export OPENROUTER_API_KEY=your-key-here
  3. Use OpenRouter models:
    # Prefix models with 'openrouter/'
    chat("Hello", model="openrouter/openai/gpt-4o")
    chat("Hello", model="openrouter/anthropic/claude-3.5-sonnet")
    
    # Discover available models
    models.discover('openrouter')

All standard AIX features work with OpenRouter models.

Architecture

AIX follows the i2mint philosophy of clean, functional interfaces:

  • Mapping interfaces for collections (models, registries)
  • Functional approach over verbose OOP
  • Lazy evaluation via generators where appropriate
  • Protocol-based design for flexibility

Backend: LiteLLM

AIX uses LiteLLM as the backend for provider interactions, but wraps it in clean, pythonic interfaces. Users never need to interact with LiteLLM directly.

Supported Providers (via LiteLLM):

  • OpenAI
  • Anthropic (Claude)
  • Google (Gemini)
  • Mistral
  • Cohere
  • And 100+ more

Design Patterns

From oa (OpenAI facade)

AIX builds on patterns from the oa package:OpenRouter

  • Simple chat interface with smart defaults
  • Template-based function creation
  • Structured output support
  • Batch processing capabilities

From i2 (Signature manipulation)

  • Clean function signatures
  • Flexible parameter handling
  • Decorator-based composition

From dol (Storage abstraction)

  • Mapping-based interfaces
  • Persistent storage options
  • Cache management

Advanced Usage

Custom Model Sources

from aix.ai_models import ModelManager, OpenRouterSource

manager = ModelManager()
source = OpenRouterSource()
models = manager.discover_from_source('openrouter')

Connector-Specific Metadata

# Get provider-specific parameters
metadata = models.get_connector_metadata('openai/gpt-4o', 'openai')
# Use with native SDK: openai.ChatCompletion.create(**metadata, messages=[...])

Error Handling

from aix import chat

try:
    response = chat("Hello", model="nonexistent-model")
except Exception as e:
    print(f"Error: {e}")

Backward Compatibility

The legacy chat_funcs and chat_models interfaces are still available:

from aix import chat_funcs, chat_models

# Old style (still works)
list(chat_funcs)  # ['gpt-4o', 'gpt-4o-mini', ...]
response = chat_funcs.gpt_4o("Hello")

# Model metadata
info = chat_models['gpt-4o']
# {'price_per_million_tokens': 5.0, 'provider': 'openai', ...}

However, the new interfaces (chat, embeddings, prompt_func, models) are recommended for new code.

Examples

Semantic Search

from aix import embed, cosine_similarity

# Build document index
docs = ["AI is the future", "Python is great", "Machine learning works"]
doc_vecs = [embed(doc) for doc in docs]

# Search
query_vec = embed("artificial intelligence")
similarities = [cosine_similarity(query_vec, dv) for dv in doc_vecs]
best_match = docs[similarities.index(max(similarities))]
print(best_match)  # "AI is the future"

Data Extraction Pipeline

from aix import prompt_func, batch_process

# Define extraction function
extract = prompt_func(
    "Extract product info from: {text}",
    output_schema={"name": str, "price": float, "category": str}
)

# Process many product descriptions
descriptions = [...]  # Your data
results = list(batch_process(
    descriptions,
    lambda d: extract(text=d),
    batch_size=10,
    show_progress=True
))

Multi-Model Comparison

from aix import chat

prompt = "Explain quantum computing in one sentence"

# Try different models
for model_id in ['gpt-4o-mini', 'claude-sonnet-4', 'gemini-1.5-flash']:
    response = chat(prompt, model=model_id)
    print(f"{model_id}: {response}")

Documentation

Contributing

Contributions are welcome! Please see CONTRIBUTING.md for guidelines.

License

Apache 2.0

Credits

Built with:

  • LiteLLM - Multi-provider backend
  • i2 - Signature manipulation utilities
  • dol - Storage abstraction patterns
  • oa - OpenAI facade inspiration

What AIX is NOT

AIX is NOT an AI agent framework. For that, see the separate aw package. AIX focuses on foundational AI operations (chat, embeddings, etc.) that can be used to build agents and other applications.

About

Artificial Intelligence eXtensions

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •