The process for enzyme-constrained model construction.
The pipeline was written and tested on Linux. The core libraries essential for the pipeline including: cobra, plotly (draw figures), and related packages.
- create ECMpy environment using conda:
$ conda create -n ECMpy python=3.6.5- install related packages using pip:
$ conda activate ECMpy
$ pip install cobra==0.13.3
$ pip install plotly
$ pip install -U kaleido
$ pip install nbformat
$ pip install requests
$ pip install Bio
$ pip install scipy
$ pip install pylab
$ pip install ipykernel
$ python -m ipykernel install --user --name ECMpy --display-name "ECMpy"Download all data and analysis code from github (directlt download or use git clone).
$ cd /file path/project save path/
$ git clone https://github.com/tibbdc/ecBSU1.gitAll results can be reproduced by executing the Jupyter Python notebooks:
-
01_model_calibration.ipynb
- Model Calibration.
-
02_construct_ecBSU1.ipynb
- Construction of ecBSU1.
-
03_CDF_kcat_and_mw.ipynb
- Cumulative distribution of kcat and molecular weights.
-
04_PhPP_analysis.ipynb
- Phenotype phase plane (PhPP) analysis.
-
05_trade_off.ipynb
- Overflow metabolism simulation.
-
06_growth_rate_diff_carbon.ipynb
- Predict growth rates on different carbon sources.
-
07_target_predict.ipynb
- Predict target genes for the production of chemicals.
Ke Wu, Zhitao Mao, Yufeng Mao, Jinhui Niu, Jingyi Cai, Qianqian Yuan, Lili Yun, Xiaoping Liao, Zhiwen Wang and Hongwu Ma, ecBSU1: A Genome-Scale Enzyme-Constrained Model of Bacillus subtilis Based on the ECMpy Workflow, Microorganisms, 2023; https://doi.org/10.3390/microorganisms11010178