Skip to content

AI-powered resume parser and ATS optimizer with real-time enhancement, professional tone adjustment, and action verb improvements - Built with Next.js, TypeScript, and Google Genkit

License

Notifications You must be signed in to change notification settings

unnita1235/AI-Resume-Parser

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

86 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

AI Resume Parser & Rewriter

Live Demo License Next.js TypeScript Tailwind

AI-powered resume enhancement tool using Google Gemini for ATS optimization, professional tone adjustment, and action verb improvements

Live Demo: https://ai-resume-parser-seven.vercel.app/
Backend API: https://ai-resume-parser-0cmr.onrender.com


πŸ“Έ Preview

AI Resume Parser Interface

Overview

AI Resume Parser & Rewriter is a web application that helps job seekers optimize their resumes using artificial intelligence. Upload or paste your resume, and the AI provides intelligent enhancements for ATS compatibility, professional tone, and impactful language.


Key Features

Core Functionality

  • 🧠 AI-powered enhancement for ATS compatibility
  • 🎯 Tone adjustment for professional language
  • ⚑ Action verb enhancement for stronger impact
  • πŸ“„ Real-time preview (input β†’ AI-rewritten output)
  • πŸ’Ύ Download resume in one click
  • πŸ“‹ Copy to clipboard functionality

File Management

  • πŸ“€ File upload - PDF, DOCX, TXT support
  • πŸ“ Text input - Direct paste functionality
  • πŸ”„ Reset function - Return to template
  • πŸ“Š Character counter - Track resume length

User Experience

  • 🎨 Modern UI with clean typography
  • πŸ“± Fully responsive - Desktop and tablet optimized
  • ⚑ Loading states - Visual feedback
  • 🎯 Error handling - Comprehensive error management
  • πŸ–¨οΈ Print optimization - Clean print layout

Tech Stack

Frontend

  • Next.js 15 (App Router)
  • TypeScript
  • Tailwind CSS + shadcn/ui
  • Radix UI + Lucide Icons
  • React Hooks

AI Integration

  • Google Genkit
  • Gemini 2.5 Flash

Backend

  • Next.js API Routes
  • Node.js Express (separate backend)
  • File processing APIs

Deployment

  • Frontend: Vercel
  • Backend: Render

Quick Start

Prerequisites

Installation

# Clone repository
git clone https://github.com/unnita1235/AI-Resume-Parser.git
cd AI-Resume-Parser

# Install dependencies
npm install

# Set up environment
cp .env.example .env.local
# Add your Google AI API key:
# GOOGLE_AI_API_KEY=your_api_key_here

# Run development server
npm run dev

Open http://localhost:3000


Project Structure

AI-Resume-Parser/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ app/
β”‚   β”‚   β”œβ”€β”€ page.tsx          # Main page
β”‚   β”‚   β”œβ”€β”€ layout.tsx        # Root layout
β”‚   β”‚   β”œβ”€β”€ api/              # API routes
β”‚   β”‚   β”‚   β”œβ”€β”€ parse/        # Resume parsing
β”‚   β”‚   β”‚   └── enhance/      # AI enhancement
β”‚   β”‚   └── globals.css
β”‚   β”œβ”€β”€ components/
β”‚   β”‚   β”œβ”€β”€ ResumeEditor.tsx  # Main editor
β”‚   β”‚   β”œβ”€β”€ FileUpload.tsx    # Upload handler
β”‚   β”‚   β”œβ”€β”€ PreviewPane.tsx   # Resume preview
β”‚   β”‚   └── ui/               # shadcn/ui
β”‚   β”œβ”€β”€ lib/
β”‚   β”‚   β”œβ”€β”€ ai.ts             # AI integration
β”‚   β”‚   β”œβ”€β”€ parser.ts         # Parsing logic
β”‚   β”‚   └── utils.ts
β”‚   └── types/
β”‚       └── resume.ts
β”œβ”€β”€ backend/                   # Express API (optional)
β”‚   β”œβ”€β”€ app.py
β”‚   └── requirements.txt
β”œβ”€β”€ .env.example
└── README.md

Environment Variables

# .env.local

# Google AI API Key
GOOGLE_AI_API_KEY=your_google_ai_api_key_here

# Next.js Config
NEXT_PUBLIC_API_URL=http://localhost:3000

# Development
NODE_ENV=development

Getting Your API Key:

  1. Visit Google AI Studio
  2. Sign in with Google account
  3. Click "Get API Key"
  4. Create new API key
  5. Copy and paste into .env.local

API Endpoints (Backend)

Resume Parsing

POST /api/parse

  • Upload and parse resume files
  • Supports: PDF, DOCX, TXT
  • Max size: 5MB

Request:

curl -X POST http://localhost:5000/api/parse \
  -F "file=@resume.pdf"

Response:

{
  "success": true,
  "data": {
    "name": "John Doe",
    "email": "john@example.com",
    "experience": [...],
    "education": [...],
    "skills": [...]
  }
}

AI Enhancement

POST /api/enhance

  • AI-powered resume rewriting
  • Tone adjustment
  • Action verb optimization

How It Works

AI Enhancement Process

  1. Input: User uploads resume or pastes text
  2. Parsing: Extract structured data from resume
  3. AI Analysis: Send to Google Gemini for enhancement
  4. Optimization:
    • ATS keyword optimization
    • Professional tone adjustment
    • Action verb strengthening
  5. Output: Display enhanced resume with improvements
  6. Export: Download or copy optimized version

Supported Enhancements

  • ATS Optimization: Keyword placement, formatting
  • Tone Adjustment: Professional language, clarity
  • Action Verbs: Stronger, more impactful verbs
  • Structure: Improved organization and flow

Features Status

βœ… Currently Working:

  • Resume file upload (PDF, DOCX, TXT)
  • Text paste functionality
  • AI-powered enhancement
  • Real-time preview
  • Download functionality
  • Copy to clipboard
  • Responsive design

🚧 In Progress:

  • User accounts
  • Resume templates
  • Version history
  • Advanced analytics

πŸ“… Planned:

  • Resume scoring system
  • Job-specific optimization
  • Cover letter generation
  • LinkedIn profile optimization
  • Multi-language support

Development Scripts

npm run dev          # Start dev server
npm run build        # Build for production
npm run start        # Run production build
npm run lint         # Lint code
npm run typecheck    # TypeScript check

Deployment

Vercel (Frontend)

  1. Push to GitHub
  2. Import repository in Vercel
  3. Add environment variables:
    • GOOGLE_AI_API_KEY
  4. Deploy automatically

Render (Backend - Optional)

  1. Create web service
  2. Connect GitHub repository
  3. Set environment variables
  4. Deploy

Performance

Current Metrics:

  • Processing time: <2s per resume
  • Supported formats: PDF, DOCX, TXT
  • Max file size: 5MB
  • AI response time: 1-3s

Security

  • API keys stored server-side only
  • Input validation and sanitization
  • Type-safe with TypeScript
  • Secure file upload handling
  • HTTPS enforced in production

Known Limitations

  • AI enhancement requires Google AI API key (free tier available)
  • Processing time depends on resume length
  • Best results with well-formatted input
  • Demo uses placeholder data when API unavailable

Future Enhancements

  • Resume ATS score (percentage ranking)
  • Multiple resume templates
  • Job description keyword matching
  • Cover letter generation
  • Interview preparation tips
  • Export to multiple formats (DOCX, PDF)

Contributing

Contributions welcome! Please:

  1. Fork the repository
  2. Create feature branch
  3. Commit changes
  4. Push to fork
  5. Open Pull Request

License

MIT License - See LICENSE


Author

Unni T A


Acknowledgments

  • Next.js team
  • Google Genkit
  • Vercel
  • shadcn/ui
  • Tailwind CSS

AI Resume Parser & Rewriter - Helping Job Seekers Land Their Dream Jobs

Note: This project demonstrates AI integration with Google Gemini for practical resume enhancement. The current deployment showcases full functionality with AI-powered optimization.

About

AI-powered resume parser and ATS optimizer with real-time enhancement, professional tone adjustment, and action verb improvements - Built with Next.js, TypeScript, and Google Genkit

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •