Skip to content

versoindustries/HighNoon-Language-Framework

Repository files navigation

HighNoon Language Framework β€” Lite Edition

License Python 3.10+ TensorFlow 2.15+ Platform Status

HighNoon Logo

Important

CPU-Native Architecture: HighNoon is purpose-built for pure CPU execution. No GPU required. Run production AI on commodity hardwareβ€”from data centers to edge deployments.

Note

Binary Distribution: The Lite Edition includes pre-compiled, hardened binaries. Users run the setup script and immediately start building models through the WebUIβ€”no compilation required.


πŸ”— Community & Resources

HuggingFace GitHub Verso Industries


πŸš€ What is HighNoon?

HighNoon is the Lite Edition of the HSMN (Hierarchical State-Space Model Network) Architectureβ€”a radical departure from GPU-dependent Transformer models. Built on Hyperdimensional Computing and quantum-inspired algorithms, HighNoon delivers:

  • O(L) Linear Complexity β€” Process 5 million token contexts without quadratic scaling
  • Zero GPU Dependency β€” Full-stack execution on commodity CPUs (Intel Xeon, AMD EPYC)
  • 100–200x Lower Energy β€” Run inference on 100W servers instead of 700W GPU clusters
  • 50–100x Faster Generation β€” Quantum Superposition Generation (QSG) parallel decoding

The CPU-Native Paradigm

Traditional AI demands H100 GPUs at $25,000–40,000 each, megawatt data centers, and 12+ month procurement timelines. HighNoon runs on hardware you already own:

Aspect Traditional (GPU) HighNoon (CPU)
Hardware Cost $350,000/node (8Γ—H100) $30,000/node (Dual EPYC)
Power Draw 10kW per node ~500W per node
Procurement Time 12–52 weeks Available now
Export Restrictions Subject to ITAR/EAR Commodity hardware

⚑ Quick Start

1. Clone & Setup

git clone https://github.com/versoindustries/HighNoon-Language-Framework.git
cd HighNoon-Language-Framework

# Run the setup script (creates venv, installs dependencies)
./scripts/setup.sh

2. Launch the WebUI

# Start the React Dashboard + FastAPI Backend
./scripts/launch_webui.sh

Access the WebUI at http://localhost:5173

3. Build Your First Curriculum

The WebUI provides an integrated workflow for training language models:

  1. Select a Template β€” Choose from pre-built curriculum presets (General Pre-training, Coding, Math/Reasoning, etc.)
  2. Browse HuggingFace Datasets β€” Search and add datasets directly from the HuggingFace Hub
  3. Configure Training β€” Set model architecture, hyperparameters, and optimization settings
  4. Launch Training β€” Start QAHPO (Quantum Adaptive HPO) to automatically optimize your model

πŸ–₯️ The WebUI: Curriculum Builder

HighNoon's WebUI is the primary interface for building and training models. It features deep HuggingFace Hub integration for seamless dataset access.

Core Features

Feature Description
Template Gallery Pre-built curriculum presets with curated HuggingFace datasets
Dataset Browser Search, preview, and add any HuggingFace dataset
Curriculum Builder Drag-and-drop stage management with dataset mixing
QAHPO Dashboard Real-time hyperparameter optimization with importance analysis
Cockpit HUD Live training metrics, loss charts, and QULS health indicators
Model Export Save and export trained models

Pre-Built Curriculum Templates

Template Focus Example Datasets
General Pre-training Broad knowledge FineWeb, Cosmopedia, OpenWebMath
Code Expert Programming The Stack v2, CodeContests, CodeSearchNet
Math & Reasoning STEM skills FineMath, GSM8K, NuminaMath
Instruction Following Assistant behavior OpenAssistant, UltraChat, Orca
Sovereign Defense Air-gapped deployments Custom classified data

HuggingFace Integration

The WebUI connects directly to the HuggingFace Hub API:

  • Search datasets by name, task type, or license
  • Preview samples before adding to curriculum
  • Stream training data directly from HuggingFace servers
  • Automatic format detection for text, chat, and instruction formats

πŸ—οΈ Architecture: HSMN

The Hierarchical State-Space Model Network achieves linear complexity through four synergistic pillars:

                      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                      β”‚          Reasoning Block Γ— N            β”‚
Input Tokens ──►      β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
                      β”‚  β”‚  HD Spatial Block (O(LΒ·D log D))β”‚   β”‚
   Holographic        β”‚  β”‚  FFT Bundling β€’ CTQW Spreading  β”‚   β”‚
   Embedding  ──►     β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
                      β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
   Floquet            β”‚  β”‚  HD TimeCrystal Block           β”‚   β”‚ ──► Output
   Position   ──►     β”‚  β”‚  Floquet Dynamics β€’ Symplectic  β”‚   β”‚     Logits
                      β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
   Superposition      β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
   BPE        ──►     β”‚  β”‚  LMWT Attention (O(L log L))    β”‚   β”‚
                      β”‚  β”‚  Multi-Scale Wavelet Transform  β”‚   β”‚
                      β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
                      β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
                      β”‚  β”‚  HD-MoE (O(D) per token)        β”‚   β”‚
                      β”‚  β”‚  Holographic Similarity Routing β”‚   β”‚
                      β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
                      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Core Components

Component Function Complexity
SpatialHDblock Hyperdimensional state-space with FFT bundling O(L Β· D log D)
HD TimeCrystal Floquet Hamiltonian dynamics for 100+ layer stability O(L Β· D)
LMWT Attention Learnable Multi-scale Wavelet Transform O(L log L)
HD-MoE Holographic Mixture-of-Experts routing O(D) per token
QSG Inference Quantum Superposition parallel decoding 50–100x speedup

Why It Works

  • Hyperdimensional Embeddings: Dense holographic vectors replace sparse attention matrices
  • Physics-Aware Training: Hamiltonian energy conservation prevents gradient instability
  • Quantum Simulation: Superposition, entanglement, and Born-rule samplingβ€”on classical CPUs

πŸ“Š Lite Edition Specifications

Caution

Enforced Limits: The Lite Edition includes tamper-proof compiled binaries with cryptographic integrity checks. These limits cannot be bypassed.

Feature Lite Edition Enterprise Edition
Architecture Full HSMN Full HSMN
Max Parameters 20B Unlimited
Reasoning Blocks 24 Unlimited
MoE Experts 12 Unlimited
Superposition Dimension 4 Unlimited
Context Length 5M tokens Unlimited
Binary Modification ❌ Protected βœ… Configurable
Support Community Dedicated

πŸ“ˆ Performance

Benchmarked on AMD Ryzen 7 2700X (8 cores, 64GB RAM, no GPU):

Metric Result Notes
Streaming Inference 174–181 tok/s O(1) memory across all context lengths
Batch=2 Inference 342–345 tok/s Near-linear scaling
Context Scaling βœ… Constant 128 β†’ 131K β†’ 5M tokens with no degradation
Memory (1M context) ~3.8 GB Fits in commodity server RAM
SIMD Optimization βœ… AVX2/FMA 32-bit optimized for cache efficiency

🏒 Enterprise Edition

For production deployments requiring unlimited scale:

  • Unlimited Parameters β€” Train and deploy models of any size
  • Unlimited Context β€” Beyond 5M tokens for full-document analysis
  • Source Code License β€” Full ownership for sovereign deployments
  • Domain Modules β€” Finance, Healthcare, Legal, Defense
  • Technology Transfer β€” On-premise training with air-gapped security

Contact: versoindustries.com/messages


πŸ“„ License

Apache License 2.0 β€” See LICENSE for details.

The compiled native binaries are provided as-is under the Lite Edition terms.


πŸ™ Acknowledgments

HighNoon is developed by Verso Industries and builds upon research in:

  • State-Space Models (Mamba, S4)
  • Hyperdimensional Computing
  • Quantum-Inspired Machine Learning
  • Hamiltonian Neural Networks

Built with ❀️ by Verso Industries
Sovereign AI for the Post-GPU Era

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published