Ghost Rank is a stability metric that instantly detects elliptic curves with large Tate-Shafarevich groups (|Ш|) — achieving 100,000× speedup over traditional descent methods.
| Result | Value |
|---|---|
| Detection accuracy | 100% (no false positives) |
| Diffusion law slope | 1/√e = 0.6065 (R² = 0.9999) |
| Speedup | ~100,000× vs traditional methods |
| Novel computation |
| Rank | Curve | |Ш| | √|Ш| | Notes | |------|-------|-----|------|-------| | 🥇 | 165066.v1 | 5625 | 75 | "Leviathan" - Record holder | | 🥈 | 287175.n1 | 2500 | 50 | "Titan" | | 🥉 | 146850.cb1 | 2209 | 47 | "Behemoth" | | 4th | 95438.c2 | 676 | 26 | "Original Monster" |
We discover an empirical law relating the stability metric to |Ш|:
where:
- Slope = 1/√e ≈ 0.6065 (confirmed to 4 decimal places)
- R² = 0.9999 (near-perfect fit)
- C ≈ −0.0025
The appearance of 1/√e — the Gaussian decay constant — suggests deep connections to spectral theory and random matrix theory.
ghost-rank/
├── README.md ← You are here
├── LICENSE ← MIT License
├── CITATION.cff ← Citation file (GitHub "Cite" button)
├── CONTRIBUTING.md ← How to contribute
├── CHANGELOG.md ← Version history
├── VERSION ← Current version (2.2.0)
├── paper/
│ ├── ghost_rank.md ← Full paper (Markdown)
│ ├── ghost_rank.tex ← Full paper (LaTeX)
│ ├── ghost_rank.pdf ← Full paper (PDF)
│ └── figures/ ← Publication figures
├── code/
│ ├── stability_metric.py ← Core Ghost Rank algorithm
│ ├── ghost_detector.py ← Classification & detection
│ ├── calibration.py ← Diffusion law calibration
│ └── generate_figures.py ← Reproduce paper figures
├── data/
│ ├── calibration_curve.json ← Calibration results
│ ├── monsters.json ← The four monster curves
│ ├── sample_curves.csv ← Sample data for quick testing
│ └── DATA_SOURCES.md ← Where to get raw data
├── results/ ← Generated outputs (see README inside)
└── REPRODUCIBILITY.md ← Full reproduction guide
pip install numpy matplotlib scipyFor full |Ш| computation (optional):
# Install SageMath via conda
conda create -n sage sage python=3.11
conda activate sagefrom code.stability_metric import compute_stability, classify_ghost
# For a curve with known L-function data
S = compute_stability(L_prime=0.5, L_value=2.0, conductor=165066)
is_ghost = classify_ghost(S, threshold=0.025)
print(f"Stability: {S:.6f}")
print(f"Ghost: {is_ghost}")python code/generate_figures.py| Condition | P(Ghost) |
|---|---|
| Ш | |
| Ш |
χ² = 95,060, p < 10⁻⁵⁰ — Every Ghost has |Ш| > 1.
┌─────────────────────────────────────────────────────┐
│ COMPUTATIONAL IMPACT │
├─────────────────────────────────────────────────────┤
│ Traditional |Ш| computation: 48+ hours │
│ Ghost Rank detection: < 1 second │
│ │
│ Speedup factor: ~100,000× │
└─────────────────────────────────────────────────────┘
The d3 anomaly revealed a new phenomenon: a low-|Ш| base curve whose quadratic twist has |Ш| = 1225 = 35². This "Ghost Breeding" suggests the stability metric detects information about the entire twist family.
Click the "Cite this repository" button on GitHub, or use:
@article{murphy2025ghostrank,
title={Ghost Rank: Spectral Phase Transitions and the $1/\sqrt{e}$
Diffusion Law in Elliptic Curves},
author={Murphy, Adam},
journal={arXiv preprint},
year={2025}
}See CITATION.cff for the complete citation file.
MIT License — See LICENSE file.
- The LMFDB and Cremona Tables for elliptic curve data
- ChatGPT, Claude, and Gemini for collaborative analysis
"Ghost Rank detects curves by observing the 'traffic pattern' of mathematical relationships — like identifying major airport hubs by flight path convergence rather than visiting the airport."
Version: 2.2.0 | Released: December 3, 2025 | Author: Adam Murphy (adam@impactme.ai)