Skip to content

yeontachi/deep-learning-lab

Repository files navigation

🧠 Deep Learning Lab

This repository serves as a personal laboratory for deep learning experimentation, research practice, and hands-on model implementation. It includes a variety of neural network experiments using PyTorch and other open-source tools, focusing on understanding model behavior through architectural variations, dataset manipulations, and training strategies.


🧪 Structure & Navigation

Each experiment is stored in a timestamped directory for easy chronological tracking.
The directory naming convention is:

🗂️ Examples:

  • 2025-06-30-MNIST → Experiment using the MNIST dataset
  • 2025-07-03-DataAugment → Experiment with data augmentation techniques
  • 2025-07-08-MobileNetV2 → Transfer learning with MobileNetV2
  • 2025-07-10-BilliardDetection → Vision-based object detection practice

✅ Each folder includes all relevant code, results, and documentation for the corresponding experiment.


📌 What’s Included

  • 📚 Model architecture comparisons (MLP, CNN, etc.)
  • ⚙️ Hyperparameter tuning and optimizer tests
  • 🧪 Effects of activation functions and regularization (Dropout, BatchNorm)
  • 🔄 Dataset transformations (noise, rotation, scaling)
  • 📊 Result visualization (accuracy plots, confusion matrix, prediction samples)
  • 📁 Open-source project analysis and customization

🚀 Frameworks & Tools


🎯 Purpose

This lab is designed to:

  • Deepen understanding of deep learning theory and practice
  • Analyze how different design choices affect model performance
  • Prepare for advanced research or academic projects in AI and computer vision

Quantization Roadmap

시기 주요 모델 대표 연구/논문 핵심 아이디어 학습/실습 포인트
2019–2020 (CNN 중심) MobileNet, ResNet, EfficientNet - HAWQ (2019): 레이어별 민감도 기반 mixed-precision
- HAQ (2019): RL 기반 HW-aware quantization
- LSQ (2019): step size 학습 QAT
- DFQ/ZeroQ (2019–2020): 데이터 없는 PTQ
- AdaRound (2020): 적응형 라운딩 PTQ
CNN을 INT8로 안정화
무데이터·혼합정밀 기법 등장
PyTorch torch.quantization 활용
ResNet/MobileNet FP32 vs INT8 정확도·속도 비교
2021–2022 (ViT 진입) Vision Transformer (ViT, DeiT, Swin) - BRECQ (2021): 블록 단위 재구성 PTQ
- PTQ4ViT (2022): ViT 8-bit 안정화
- Q-ViT (2022): QAT 기반 저비트 ViT
CNN 대비 분포 특성이 다른 ViT에 맞춘 PTQ/QAT 기법 HuggingFace ViT 모델 불러와 PTQ 적용
FP32 vs INT8 정확도 비교
2023 (LLM과의 접점, 초저비트) CLIP, ViT+Text - AWQ (2023): 활성 기반 weight-only 4bit
- QLoRA (2023): 4bit + LoRA (LLM 영향, VLM에도 적용)
비전-언어 모델에도 4bit 적용 가능성 열림 OpenAI CLIP 모델에 4bit quantization 적용 실습
2024 (구조적·멀티모달 확장) MobileNetV4, SmolVLA - Structured Quantization (2024): 채널·행렬 단위 양자화
- MobileNetV4 (2024): 양자화 친화 구조 설계
- SmolVLA (2024): 소형 VLA 모델
단순 비트 축소를 넘어 구조 최적화
멀티모달 모델 엣지 디바이스 적용
ONNX/TensorRT 기반 INT8 최적화
모바일/IoT 환경 배포 실습
2025 (초저비트 안정화 + HW 결합) MicroViT, OpenVLA int4, RepNeXt - APhQ-ViT (CVPR 2025): ViT PTQ 성능 개선
- OpenVLA int4 (2025): 4bit 멀티모달
- RepNeXt (2025): HW-aware quantization 적용
2bit 이하 초저비트 안정화, HW와의 긴밀한 결합 PyTorch+ONNX로 ViT 4bit PTQ/QAT 실습
NPU/EdgeTPU에서 추론 성능 확인

🧑‍💻 Author

JaeHyuck Yeon (연재혁)
Undergraduate Researcher — Deep Learning & AI Practice
Contact: yeonjjhh@gmail.com


Feel free to clone the repo, browse through the dated experiment folders, and learn from the process!

About

deep-learning-lab

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published