Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .github/workflows/tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ jobs:

runs-on: ubuntu-22.04
strategy:
fail-fast: false
matrix:
python-version: ['3.9', '3.10', '3.11']

Expand Down
18 changes: 14 additions & 4 deletions pvactools/lib/output_parser.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,7 +196,8 @@ def get_percentiles(self, line, method):
def transform_empty_percentiles(self,p):
return float(p) if p != 'None' and p is not None and p != "" else 'NA'

def calculate_normalized_percentile(self, allele, length, score, method, is_reversed=False):
#def calculate_normalized_percentile(self, allele, length, score, method, is_reversed=False, mode="per_length"):
def calculate_normalized_percentile(self, allele, length, score, method, is_reversed=False, mode="length_agnostic"):
if allele is None or length is None or score is None or score == 'NA':
return 'NA'

Expand All @@ -207,7 +208,10 @@ def calculate_normalized_percentile(self, allele, length, score, method, is_reve
allele_file = f"{normalized}_percentiles.h5"
file_path = os.path.join(self.reference_scores_path, allele_file)

key = f"{method}/{length}mer"
if mode == "per_length":
key = f"{method}/{length}mer"
elif mode == "length_agnostic":
key = method
cache_key = f"{normalized}_{key}"
if cache_key in self.reference_scores:
ref_scores = self.reference_scores[cache_key]
Expand All @@ -216,9 +220,15 @@ def calculate_normalized_percentile(self, allele, length, score, method, is_reve
with h5py.File(file_path, "r") as f:
if key not in f:
return 'NA' # algorithm or length not present
ref_scores = f[key][...]
if mode == "per_length":
ref_scores = f[key][...]
elif mode == "length_agnostic":
scores = []
for length in f[key].keys():
scores.extend(f[key][length][...])
ref_scores = np.array(sorted(scores))
self.reference_scores[cache_key] = ref_scores
except Exception:
except Exception as e:
return 'NA'

if ref_scores.size == 0:
Expand Down
Loading